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Hydrodynamic stability of a sheared liquid film 
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We study the hydrodynamic stability of a thin layer of liquid that is sheared by a gas. 
First, the interface conditions for the free surface approximation of the problem are 
discussed. We then study the stability of the flow to disturbances with phase speeds 
smaller than the maximum velocity in the liquid film, i.e. the internal mode, extending 
previous results and resolving some apparent contradictions. 

The dynamic effect of the gas is studied by dropping the free surface approximation 
and solving the Orr-Sommerfeld equation for the gas together with that for the liquid. 
The effect on the stability of the liquid film is very large, which is explained by the 
fact that the imaginary part of the wave speed (which determines the stability of the 
film) is very small. Consequently the free surface approximation is, in general, not 
correct. 

We then study the dependence of the critical Reynolds number on the Weber 
number, on the curvature of the liquid velocity profile and on the properties of the 
gas. With the gas included, a second mode of instability is found which has a phase 
velocity that is, in general, larger than the maximum liquid velocity and corresponds 
to capillary-gravity waves. We compare results with experiments from the literature; 
good agreement is found. Finally, a suggestion on the relevance of this study to the 
generation of 'roll waves', which are important from a practical point of view, is 
given. 

1. Introduction 
The hydrodynamic stability of thin liquid films, bounded by a wall and sheared by 

a gas, plays an important role in many industrial processes. A good example is the 
flow of hydrocarbons in furnace tubes, condensate in gas wells and liquid in cooling 
systems of nuclear installations. The liquid flows as an annular film along the wall of 
the vertical pipes, while the gaseous components flow in the centre of the tubes. The 
stability theory of such liquid films may be used to predict the transition to dispersed 
flow, where liquid droplets are entrained by the gas. 

In this report we will consider the hydrodynamic stability of a thin liquid film that 
is bounded by a wall, and which is moving due to the shear force of a gas flowing over 
its surface and gravity. Several authors have considered this or a similar problem, 
often originating from the study of the generation of water waves by wind and we 

Present address: Shell Internationale Petroleum Maatschappij, Postbus 162,2501 AN Den Haag, 
The Netherlands. 

$ Present address: Laboratory for Aero- and Hydrodynamics, Rotterdamseweg 145, 2628 AL 
Delft, The Netherlands. 



176 R.  Miesen and B. J .  Boersrna 

Quantity Liquid Gas 

Mass density p (kg m-3) 103 1 
Dynamic viscosity p (mPas) 1-10 0.01 

Velocity U (m s-l) 1 10-100 
Length scale d (m) 10-4-10-3 2 0.01 

Reynolds number pUd/p  100 2 104 
Interfacial tension CT (N m-l) 0.05 

TABLE 1. Characteristic values of the important physical parameters. 

will briefly discuss the more important papers with respect to this study. But first, to 
set the scene, we give some characteristic values of the relevant parameters for the 
type of flow of interest (table 1). The mass density and the dynamic viscosity of the 
liquid are much larger than those of the gas, but the kinematic viscosity v = p / p  
can be of the same order of magnitude. A typical gas velocity is at least an order 
of magnitude larger than the velocity of the liquid and while the liquid film can be 
considered laminar, the gas flow will be turbulent. 

Miles (1962b) distinguishes four mechanisms for the generation of waves on the 
surface of a liquid. He argues that for thin films the formation of long waves will 
be inhibited by wall friction and that therefore only short waves will be formed. 
For short waves the important mechanism for energy transfer from the flow to the 
waves will be through the viscous Reynolds stress. For longer waves energy transfer 
is through the well known mechanism of inviscid Reynolds stress in the critical layer 
(where the wave speed equals the mean gas speed) of a curved velocity profile, e.g. 
Miles (1957, 1959). The essential difference between these two mechanisms is in the 
position of the critical layer: in the viscous sublayer for short waves (where the 
velocity profile is linear) and outside the viscous sublayer for long waves. For short 
waves two different cases have to be considered: waves that move faster than the 
maximum velocity in the liquid and waves that are slower than this velocity. 

In the first case the critical layer is in the gas and energy transfer is through the 
viscous Reynolds stress in the immediate neighbourhood of the surface. This case 
has been considered by, for example, Miles (19624 and Cohen & Hanratty (1965) 
following the ‘quasi static’ approximation or ‘divided attack’ as Benjamin (1959) calls 
it: first the stresses that a gas exerts on a solid wavy surface are calculated and then 
the equations of motion for the liquid are solved, the calculated stresses entering 
through the conditions for the liquid flow at the gas/liquid interface. 

The second case is considered by Miles (1960) and by Smith & Davis (1982)T. In 
this case, which Miles suggests is important for very thin films, the critical layer will 
be in the liquid and energy transfer is through the viscous Reynolds stress in the 
liquid. He shows that the film can be unstable because the film is sheared alone, 
i.e. the film can be unstable even if the dynamic influence of the gas (in the form 
of stress variations on the liquids surface) is negligible. However, Miles’ (1960) 
asymptotic results are valid for disturbances that are longer than the thickness of 
the liquid layer only, as will be explained later. This conclusion can also be found 

t The full problem for the gas and the liquid was also studied by Lock (1954) and Feldman (1957). 
However, their calculations are incorrect (Miles 1960; Blennerhassett 1980; Hooper & Boyd 1983). 
Blennerhassett also studies the full problem, focusing on nonlinear waves. This makes several 
assumptions necessary that are not correct in the present context. 
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in the paper by Smith & Davis (1982), who solve the problem numerically. It is 
illustrated by their figure 2 (compare the curves b and c). However, the rest of their 
calculations use interface conditions that differ from those of Miles and which are 
incorrect to describe the stability of the flow in a liquid film that is sheared by a 
gas. 

The paper by Craik (1966) should also be mentioned. In that paper the hydro- 
dynamic stability of thin liquid films (typically thinner than lOP3m) is studied both 
experimentally and theoretically for relatively small Reynolds numbers of the liquid 
layer (typically smaller than 10). The experiments show the presence of two types of 
waves: ‘fast waves’, having wave speeds larger than the surface velocity of the liquid 
film, and ‘slow waves’, having wave velocities somewhat smaller than the surface 
velocity. The first were only present at a high enough Reynolds number of the film 
and are of the type considered by Miles (1962a) and Cohen & Hanratty (1965). 
The ‘slow waves’ are present at low enough Reynolds number. Thus this in- 
stability is different from the one considered by Miles (1960), which would also 
lead to waves slower than the surface velocity but only at high enough Reynolds 
number. Miles does not find these slow waves from his analysis because he ig- 
nores surface stress fluctuations of the gas and considers large Reynolds numbers 
only. 

The same problem as formulated by Miles (1960) is considered here and a minor 
error in that paper will be corrected. Furthermore, the analysis will be extended to 
include larger wavenumbers, which have been shown to be important (Smith & Davis 
1982). The discrepancy between the curves of neutral stability of the flow as found 
by Miles and as found by Smith & Davis will be clarified. In the second part of this 
paper the dynamic effect of the gas on the stability of the liquid film is considered 
and consequently the ‘interfacial mode’ will enter the analysis (see Blennerhassett 
1980 and Yiantsios & Higgins 1988). Our results will be compared to previous results 
for that mode. Then, our results will be compared with experiments presented by 
Cohen & Hanratty (1965) and Craik (1966); agreement is shown to be very good. 
Finally, the potential relevance of this study to the generation of ‘roll waves’ and 
entrainment will be discussed. 

2. The primary flow 
The annular flow in the liquid film is assumed to be laminar because its Reynolds 

number is not very large (see table 1). The liquid flow is driven by the shear 
force of the gas on the liquid interface and possibly by a pressure gradient or 
gravity. The flow of the gas in the pipe is turbulent and is driven by a pressure 
gradient in the direction of the pipe. We will use a ‘quasi-steady’ description of 
the gas flow, assuming the velocity of the primary flow in the gas to be given by 
its time-average and so ignoring turbulent fluctuations. However, when studying 
the stability of the flow we will admit time-dependent perturbations. A mecha- 
nism for the generation of waves by stress fluctuations has been studied by, for 
example, Phillips (1962). The justification of the above assumption is discussed by, 
for example, Miles (1962a) and Craik (1966) and is supported by the observation 
that liquid films can have a perfectly smooth surface in the presence of a turbu- 
lent gas flow (Cohen & Hanratty 1965). Furthermore, it is possible to include 
turbulent effects partly by incorporating turbulent Reynolds stresses (with some clo- 
sure model) in such a quasi-static model (see for instance van Duin & Janssen 
1992). 
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2.1. The liquid Jilm 
The flow can be solved in a cylindrical geometry (Boomkamp & Miesen 1992) but 
because it is assumed axisymmetric and the liquid film is sufficiently thin it can be 
considered two-dimensional (see e.g. Miesen et a l .  1992 and figure 1). The flow U ( y )  
in the film along the plate 
balance : 

in the- x-direction can be found-from' the momentum 

d2 U 
- P x - g p l + p l - -  = o ,  

dY 
where y is the distance to 
gravitational acceleration in 
and ,UI its dynamic viscosity. 

the plate, P, is the axial pressure gradient, g is the 
the negative x-direction, is the density of the liquid 
As P, i s  independent of (see e.g. Yih 1967), equation 

(2.l).can beintegrated directly to give U(y) .  The integration constants are determined 
by conditions at the wall and at the liquid/gas interface. No-slip at the wall gives 
U(-d)  = 0. Continuity of shear stress across the interface gives the condition 
p~dU/dy = z at y = 0, where z is the shear force that the gas exerts on the liquid 
interface. Integrating (2.1) then gives 

We may introduce a dimensionless coordinate and velocity as 

Here, Ui = d 2 / p I  is the liquid velocity at the interface if the velocity profile is linear, 
i.e. if P, + gpl is negligible. Substituting (2.3) into (2.2) and dropping tildes gives 

(PX + gpr)d U ( y )  = Ay2 + y + 1 - A ,  A = 
22 (2.4) 

Or in in a frame that moves at the interfacial speed, 

W Y )  = AY2 + Y ,  - 1 d y d O .  (2.5) 

From (2.4) it follows that if A = 0.75 there is a net downward flow, indicating 
that the shear force exerted by the gas is not sufficient to transport the film upwards. 
For A = 0.5 the shear stress at the wall is zero, corresponding to the onset of 'flow 
reversal' (see for example Hetstroni 1982). We have chosen the gas flow to be in the 
direction opposite to gravity. If the gas flow is downward the velocity profile in the 
liquid film is still given by (2.4), replacing +gpl by -gp l .  For pipes larger than, say, 
0.01 m, P, is usually of the order of or smaller than gpr so that A can be negative. 
If the shear force z is very large so that A << 1, the velocity profile is approximately 
linear and the stability problem is equivalent to that of Miles (1960), who considers 
a laminar horizontal film under zero pressure gradient. 

We estimate the shear force of the gas from z = ic fp ,  U i ,  with cf the friction factor 
which is of order 0.02 for the parameters in table 1 (see Wallis 1969), pg the mass 
density of the gas and U, the gas velocity. From the definition (2.4) of A we then find 
that A = 0.5 corresponds to Ug = 20ms-' and A c 0.1 if U, > 50ms-'. 

2.2. The g a s  
The gas flow is a developed turbulent flow in a pipe. The time-averaged velocity 
profile can be approximated by a linear velocity profile close to the film and the 
well-known logarithmic profile (e.g. Kays & Crawford 1966) further away from the 
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FIGURE 1. The flow of a liquid film that is sheared by a gas. 

interface. A different profile is used in studies of wave generation by wind to which 
we will refer later, Miles ( 1 9 6 2 ~ )  : 

(2.6) I W Y )  = ( Z / P g ) Y ,  
U(Y) = ( Z / P g ) ' / 2  [s + (Y - tanh ; Y > l K ]  7 

sinhy = Iv - Wg/(PgW21,  

0 Q y Q sP,/(Pg7),'/2 
Y 2 sPg/(Pg7)'/2, 

2K(Pg7)'/2 

P g  

with 7 the shear stress, p g  the dynamic viscosity of the gas, IC = 0.4 the Von Khrman 
constant (Hinze 1975) and s determines the thickness of the viscous sublayer (often 
taken to be between 5 and 8). To asymptotically analyse or numerically efficiently 
solve the problem, the gas velocity profile is approximated further, as done by 
Yih (1990). The linear velocity profile of the viscous sublayer is extrapolated to the 
value at the pipe centre, after which the velocity is taken constant (figure 1 ) .  Note that 
this is correct only because we consider waves that have a critical layer in the viscous 
sublayer, so that velocity profile curvature is not important for the mechanism of 
instability (see the Introduction). Using (2.3) to make the profile dimensionless gives 

with m = p , / p g  and the thickness b of the shear layer in the gas defined by 

where Ug is the gas velocity with respect to the liquid/gas interface. Note that the 
tangential stress in the primary flow given by (2.5) and (2.7) is continuous across the 
interface. 

3. The stability problem 
3.1. The Orr-Sommerfeld equation 

To study the stability of the above incompressible, parallel primary flow, the Navier- 
Stokes equations can be simplified to the Orr-Sommerfeld equation if the disturbances 
of the flow are assumed to be small, retaining only the linear terms in these distur- 
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bances. Disturbances can then be written as (e.g. Drazin & Reid 1986; Yih 1990) 

R. Miesen and B. J. Boersma 

f(X,Y, 4 = f ( Y )  exp[ia(x - ct)l, (3.1) 

where f ,  f, a, and c stand for a disturbance, its y-dependent part, its wavenumber 
and its phase velocity. Note that c, as a function of a and the flow parameters, has 
to be determined from the following analysis. The real part of c gives the velocity 
of the wave, while the imaginary part of ac is the growth rate, with Im(ac) > 0 for 
growing waves. Writing the Orr-Sommerfeld equations in dimensionless form, using 
the characteristic length scale d, velocity Ui, time d/Ui, viscosity pl, mass density pl, 
and pressure plU?, gives for the three regions defined by (2.5) and (2.6) or (2.7) (Yih 
1967) 

(2 - a2) 
~ ( y )  = iaR ~ ( y ) ,  -1 < y < 0, (3.2) 

dY 

2 ( d’ - a 2 )  4(y) = iaRrm(my - c) ($ - a2) 4(y), 0 < y < b, (3.3) 
dY2 

(c - a2)  ~ ( y )  = iaRrm(mb - c) (g - a2) ~ ( y ) ,  y > b, (3.4) 
dY dY2 

where the Reynolds number R = p~Uid/p/, r = pg/p l ;  V, 4, and x are the y-dependent 
parts of the stream functions defined by, for example, 

4% Y, t )  = U(y) + - exp[ia(x - ct)], 

u(x,y,t) = -iax(y) exp[ia(x - ct)], 
a Y  (3.5) 

where u,u are the disturbances of the velocity in the x- and y-directions. 

3.2. Boundary and interface conditions 
The no-slip and zero perpendicular velocity conditions at the wall give 

x(-l) = x’(-1) = 0, (3.6) 

where a prime represents differentiation with respect to y. Furthermore, disturbances 
should be small far from the interface, so that 

lp(00) = lp’(.o) = 0. (3.7) 

At the interface we use the continuity of the two velocity and stress components. 
The correct form of these continuity conditions is given by Yih (1990) : 

x = 4  at y = 0, (3.8) 

x’ - 4’ = x(m - l)/c at y = 0, (3.9) 

2’’ + a2x = m-’(4” + 24)  - 2Ax/c at y = 0, (3.10) 

x”’ - 3cr2x’ + ictR(c2’ + 2) - mp1(4’’’ - 3a24’) - iaRr(c4’ + rn4) 
-iaR(sinPF + a2S)x/c = 0 at y = 0, (3.11) 

where p is the angle between the direction of gravity and the negative y-axis, 
F = g(p, - pg)d/(plU,?) and S = a/ (p /U?d) ,  with t~ as the interfacial tension. In 
deriving these conditions U(0)  = 0 is used. 
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It is important to note that (3.10) and (3.11) reduce to the conditions for a sheared 
liquid film with a free surface, as used by Miles (1960), if r + 0, m + 00 and m r  + 0. 
Equations (3.8) and (3.9), i.e. continuity of the velocity, do not apply for a free surface. 
Thus, a gas/liquid interface can only be assumed to be a free surface if the density 
and the dynamic viscosity of the liquid are much larger than those of the gas, while 
the liquid’s kinematic viscosity should be much smaller (mr -P 0). For an air/water 
system at atmospheric pressure m = 50 and r w lop3, so that at least in this case the 
free surface conditions used by Miles seem to apply. If the gas is at a higher pressure, 
or if the liquid is much more viscous, m r = O( 1)  and the free surface approximation 
does not hold. We will see, however, that even for an air/water system the dynamic 
influence of the gas is large. 

Smith & Davis (1982) have considered the same problem as Miles (1960), solving 
it numerically for all wavenumbers but with different conditions at the gas/liquid 
interface. The difference is due to the discontinuity in the tangential stress of the 
basic flow of Smith & Davis, giving additional terms. For the flow considered here, 
i.e. a liquid that is sheared by a gas, the interface conditions as used by Miles should 
therefore be used?. Note, however, that Smith & Davis also perform one calculation 
with the equations used by Miles. 

At the ‘virtual interface’ y = b between the region in the gas where the velocity is 
assumed constant and the region where there is a velocity gradient, similar conditions 
as the above hold (Yih 1990): 

v = 4  at y = b, (3.12) 

IQ’ - 4’ = m y / ( c  - mb) 

y” + a2y = 4” + a24 

at y = b, (3.13) 

at y = b, (3.14) 

4”‘ - 3a24’ + iaRrm[(c - mb)# + m4] - iaRrm(c - mb)y’ 
-IQ’” + 3a2y’ - 2ma2y/(c  - mb) = 0 at y = b. (3.15) 

Note that the last term of equation (3.15), was assumed to be zero by Yih (1990) with 
the argument that ‘in fact the mean shear stress has no jump at y = b’. Since this 
term is O(R-’) it can be neglected anyway in Yih’s approximation. In the present 
paper we have also neglected this term and checked that differences are indeed small 
whether this term is included or not. If differences are not small it means that the 
approximation of the gas velocity profile by (2.7) cannot be used. If the velocity profile 
(2.6) is used the last term in (3.15) is zero because the shear stress is continuous at 
y = b, and (3.14) could be argued to have an extra term because the curvature has a 
jump at y = b which should again be small. 

4. A free surface and a linear velocity profile 
The simplest form of the stability problem is obtained by approximating the 

gas/liquid interface by a free surface for the liquid and using a linear velocity profile 
in the liquid. The conditions for the first assumption have been discussed in the 
previous section. The assumption of a linear velocity profile is correct if we consider 
like Miles (1960) a liquid film on a horizontal plate, or if the gas velocity in a vertical 
arrangement is very high so that A = 0 in (2.5). The stability of such a flow is 
described by equation (3.2) with A = 0, with conditions (3.6) and the limiting form 

the JFM Editorial Office. 
t A more comprehensive discussion on the inferface conditions is available from the authors or 
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of (3.10) and (3.11): 
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for -1 < y < 0, (4.1) 

x = x I = O  at y = -1, (4.2) 
X I 1  + a2x = 0 at y = 0, (4.3) 
w = x'l' - 3a2x' + iaR(cx' + x) - iaR(sin PF + a2)Sx/c = 0 at y = 0. (4.4) 

Equation (4.1) has four independent solutions, two of which can be seen to be given 
by : 

(4.5) 
These solutions are called the inviscid solutions since they are solutions if R + co. 
The two other solutions can be identified with the viscous boundary layers at the wall 
and at the interface. 

4.1. Miles 

Xl(Y)  = cosh[a(y + 111, x2(y) = sinhb(y + 1)l. 

Assuming that aR >> 1, Miles (1960) approximates these viscous solutions by 

[(aR)'l3(y - c) - 51 Ai(ei"l6[) d[, (4.6) 

x4(y) = ( y  - c)-5/4 exp [3(iaR)ll2(y - c ) ~ / ~ ]  , (4.7) 
for which he refers to Lin (1955); Ai() denotes the Airy-function of the first kind 
(see for instance Abramowitz & Stegun 1965). The solution x3 is associated with 
the boundary layer near the wall and is exponentially small at the interface if 
( c ~ R ) ' / ~  >> 1, and vice versa for x4. The solution of (4.1) for the stream function x 
is a linear combination of x1,2,3,4, which is substituted into the conditions (4.2)-(4.4) 
giving four linear algebraic equations in the coefficients of x1,2,3,4. Since 23 and x 4  

are exponentially small at the interface and the wall, respectively, Miles finds the 
following eigenvalue equation for c : 

X l w  x2w x 3 w  0 
x; w x;w x i w  0 = 0, (4.8) 
QJli u 2 i  0 U4i  

2a2xli 2a2x2i 0 xij +a2x4i 

where the first subscript identifies the individual solutions and the second the point 
of evaluation (w at the wall, and i at the interface). Expanding this determinant and 
substituting (4.4) and the expressions for x1,2,3,4, this equation can be written as (see 
the Appendix) : 

] (c + 2ia/R)' 
a2 cosech2a F(z)(c + 1) 

a cotha + 
1 - a(c + l)F(z) cotha 

+(c + 2ia/R) - a2S + O(R-3/2,  S / R 2 )  = 0, 

where we have used the definition of the Tietjens function: 

[Ai(eiK/6 [ )d[ 

z S,-'Ai( einI6 [)d[ 
F ( z )  = 1 + , z = (aR)'/3(c + 1). 

(4.9) 

(4.10) 
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Equation (4.9) for the eigenvalue c of the problem is very similar to equation (4.6) 
of the paper by Miles (1960), except for an extra factor [l - a(c + l)F(z) coth a]-' 
in the second term which is probably due to an error in Miles's approximation of 
(4.8). We could now approximate this equation further along the lines of Miles. 
Here we choose to solve equation (4.9) directly at the cost of some extra CPU timet. 
Comparing the results with the extra factor excluded or included gives that the critical 
Reynolds number for zero surface tension ( S  = 0) changes from 225 (with additional 
approximations Miles finds 203) to 136. This is considerably closer to the result 78.6 
as found by Smith & Davis (1982) (their result for the same boundary conditions as 
Miles). For S = 0.1 these numbers are 787 (Miles) and 618 (equation (4.9)). Smith & 
Davis do not give a result for S = 0.1, but in the following 631 is found. 

All other corrected results of Miles (1960) could now easily be calculated. Smith & 
Davis show, however, that the neutral curve as calculated from equation (4.9) is not 
correct for a > 1. This is because the imaginary part of the phase velocity is small, 
say order (RR)- ' /~ ,  and the approximate solutions (4.6) and (4.7) introduce errors that 
are of the same order of magnitude or larger for a > 1. 

4.2. Improved solutions 
To improve on the solutions of (4.1) there are several options. An exact solution can 
be given (Feldman 1957), which is a linear combination of x1,2 as defined in (4.5) and 

(4.1 1) 
l Y  

x 4 y )  = a sinh[a(y - 5)] Ai[ei"/6(aR)'/3(1 - c - ia/R)]d[, 

sinh[a(y - 5)] Ai[e5i"/6(aR)1/3(c - c - ia/R)]dc. (4.12) 

A disadvantage of using this solution is that instead of F(z) in (4.9) the dispersion 
equation will contain a function of two parameters: z and a. 

Note that the approximate solution (4.6) is the lowest-order term in an expansion 
of (4.11) with respect to a. Thus, another possibility to improve on (4.6) is to take 
into account higher-order terms of this expansion. Also the solution (4.7) can be 
improved by adding higher order terms (see Lin 1955). We have found, however, that 
the problem of the breakdown of the approximations at a wavenumber around 1 is 
not resolved. The small parameter of the expansion is ~ / ( a R ) l / ~  << 1, but because 
Im(c) is of the order l / (~xR)' /~  the expansion is valid for a << 1 only. 

A third possibility is a matched asymptotic expansion as used by Hooper & Boyd 
(1987). Their solution is not uniformly valid if Re(c + 1)  is very small. However, for 
large enough wavenumbers this is not the case (Miles 1960, equation (5.1)) so that 
the results of an analysis using the stream function as given by Hooper & Boyd can 
be used for a > 0.1, while Miles's results can be used for a << 1. Using a matched 
asymptotic expansion yields results similar to the analysis of Miles and no agreement 
with the result of Smith & Davis (1982), for a similar reason as discussed above. Such 
an analysis, however, does give a simple estimate of the growth rate and an asymptote 
of the neutral curve$: 

} (4.13) 
R(a) = 8a3( 1 + cg)( 1 + aS tanh 
co = -[1 + (1 + 4a S coth a)1/2]/(2a coth a). 

[tanh a/(aco)12 cosh4 a, 

t The Mathematica (Wolfram 1991) programme to solve (4.9) is available from the authors or 

3 A copy of the calculation is available from the authors or the JFM Editorial Office. 
the JFM Editorial Office. 
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FIGURE 2. The free surface approximation. (a) Curves of neutral stability as found by Miles (1960) 
(dashed line), Smith & Davis (1982) (solid) and in this paper (dashed-dotted line). (b )  The growth 
rate Im(ac) as a function of the wavenumber for S = 0, for R = 100 (solid line) and R = 400 
(dashed line). 

As the asymptotic methods in this section do not improve on the results of Miles, we 
will use a linear combination of the exact solutions defined in (4.5), (4.11) and (4.12). 
We then proceed as in 94.1: substituting the linear combination into the boundary 
conditions (4.3)-(4.4), giving (4.8). To obtain that equation (aR)'I3 >> 1 is used, so that 
~3 and 2.4 are exponentially small at the interface and the wall, respectively. Because 
of the highly oscillatory nature of the Airy function this assumption is essential to 
get a dispersion equation that can be solved numerically. The expansion of the 
determinant gives again the dispersion equation (A l), but with F ( z )  now defined by 
(A2) and (4.11). The expression for w4i is in this case found from (4.4) and (4.12). 
The dispersion equation thus obtained is then solved using a small Mathematica 
programme?. 

4.3. Resolution of the diferences in neutral curves 
The neutral curve found with this programme (figure 2a, solid line) is the same as 
curve (b) in figure 2 of Smith & Davis (1982), giving a critical Reynolds number of 
78.4. If the growth rate is plotted as a function of the wavenumber for S = 0 and 
R = 100 (figure 2b, solid line) the two points at which the growth rate is zero ( a  NN 1.5 
and o! = 2.6) correspond to the intersection of the line R = 100 and the curve of 
neutral stability (solid line) in figure 2(a). For higher Reynolds numbers, however, 
there are two extra points where the growth rate is zero (figure 2b, dashed line). 
Obviously, these points form another curve of neutral stability (figure 2a, dashed- 
dotted line), which has not been noted previously. This shape of the neutral curve 
implies that for large Reynolds numbers there is in fact a 'short wave instability' 
and an instability at moderate or long wavelengths. Note that the asymptotes of the 
neutral curve given by R, = 27.05(1 - 3S)-3a-7 (equation (6.8) of Miles 1960) and 
equation (4.13), correspond to the moderate wavelength instability. 

If the surface tension coefficient S is only slightly larger than zero, the short wave 
instability is stabilized by surface tension and the two branches of the neutral curve 
are connected again. The neutral curve is similar in shape to the curves found 
by Miles (see figure 2a, dashed line). If the surface tension coefficient is increased 
further the Reynolds number for which there is instability also increases and the 
results resemble more and more the asymptotic result found from equation (4.9). The 

t The programme is available from the authors or the JFM Editorial Office. 
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Reynolds numbers for which this is the case are, however, very large so that the flow 
in the liquid layer will be far from laminar. 

In case of instability the most unstable mode has a wavenumber typically between 
1 and 2, i.e. 3 to 6 times the thickness of the liquid layer. With increasing Reynolds 
number the phase velocity decreases from half the interface velocity to almost zero 
(in the laboratory frame). A typical dimensionless growth rate is order 0.01. 

5. The dynamic effect of the gas 
So far we have neglected the effect of the perturbations of the flow in the gas on 

the stability of the liquid film and we have considered the influence of the gas through 
the shear of the basic flow in the liquid only. The conditions for this approximation 
were given by Miles (1960) and in $3. In this section the dynamic effect of the gas 
will be considered, as well as the validity of these conditions, by solving the system of 
equations given by (3.2)-( 3.4), (3.6)-(3.15). These equations will be solved numerically 
and asymptotically neglecting the curvature of the velocity profiles, i.e. for the primary 
flow given by (2.5) with A = 0 and (2.7). 

5.1. Asymptotic solution 
The solution of equation (3.4) for the region where the gas has a constant velocity, 
together with condition (3.7), is given by 

Y(Y) = c exp[a(b - Y)l + D exP[-Y(Y - b)l, (5.1) 

(5.2) 

where y is given by 

y 2  = iaRrrn(mb - c) + a2, Re(?) > 0, 

and Re() stands for taking the real part. 
An approximate solution of (3.3) that satisfies (3.12)-(3.15) is given by?: 

4(Y) = dl4l(Y) + d242(Y), (5.3) 

+2(y) = ['(y - 5) Ai[ei"l6 ( ~ R r m ~ ) ' / ~ ( i  - c/m)]dC. (5.5) 
JOO 

A more accurate solution for the viscous part of $(y) is given by (cf. (3.2) and its 
solution) : . ,." 

42(y) = Jd sinh[a(y - i)] Ai[ei"/6(aRm2r)"3(( - c/m - ia/Rm2r)]di. (5.6) 

In the following we will use this solution for +2(y), because we have shown in $4 
that this accuracy is required to correctly determine the imaginary part of c and 
the neutral curves. Note that in constructing the solution it has been assumed that 
the viscous part 42(y), which is associated with the viscous boundary layer near the 

f Yih (1990) constructs this solution by first approximating the conditions (3.12)-(3.15) at the 
virtual interface y = b by two conditions in which only the 'inviscid' part of 4 occurs. The 
same solution can also be obtained in a more formal way by solving equation (3.3) with a 
matched asymptotic expansion (Hooper & Boyd 1987), correct to O(crR)-'/*, which satisfies the four 
conditions at the virtual interface. 
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interface, is small at the virtual interface y = b, i.e. (aRm2r)'j3b >> 1. This is a similar 
approximation as made in the liquid ($4), for which it was required that ( z R ) ' / ~  >> 1. 

We then proceed as in $4.1: the solution (5.3) for 4 ( y )  and the solution for ~ ( y ) ,  
given by a linear combination of (4.5), (4.11) and (4.12), are substituted into (3.6) and 
(3.8)-(3.11). The coefficient determinant of the resulting six equations must be zero 
to have non-trivial solutions: 

where 

= 0, 

(5.7) 

Note that the upper-left 4 x 4 submatrix is the same as equation (4.8). Equation (5.7) 
is solved using a Mathematica programme that is similar to the one used in $4.2. This 
gives the complex phase velocity as a function of the wavenumber and the parameters 
of the problem: 

c = c(a, R, S, m, r ,  b), (5.10) 
where b is calculated from z = &pg Up" and (2.8) and is a reflection of the primary flow 
of the gas. Note that it has been assumed that (aR)'I3 >> 1 and that (aRm2r)'j3b >> 1. 
Comparing with the results in $5.2 shows that correct results are obtained if ( E R ) ' / ~  > 4 
and ( ~ t R m ~ r ) ' / ~ b  > 4. 

To assess if the dynamic effect of the gas on the hydrodynamic stability of the liquid 
film is significant, the growth rate for realistic values of the parameters R, S, A, m, r ,  
and b is compared with the result for the same R, S ,  and A in the free surface 
approximation of $4. We remark that taking the gas into account leads to an extra 
mode of instability, (see e.g. Miles 1962; Blennerhassett 1980; Yiantsios & Higgins 
1988) which will be considered in 96. Consider a typical air/water system, so that 
pl = 997 kg m-3, pl = 1.01 lop3 Pas, pg = 1.21 kg m-3, pg = 1.79 Pas and the 
surface tension coefficient (r = 0.074Nm-l. This gives m = 56.4 and r = 0.00121. If 
we take U, = 40ms-' and c j  = 0.02 (see Wallis 1969), we find from z = icjpgUg2 
that z = 19.4N m-'. From the definition (2.3) of Ui and R = plUid/pl it is found that 
a Reynolds number R = 400 corresponds to Ui = 2.79 ms-' and d = 0.145 m. 
The definition (3.11) of S and (3.10) of b then gives S = 0.0657 and b = 0.254. To 
use the asymptotic method of this section we assume that the curvature A is zero. 
This is the case for a liquid film on a horizontal plate and approximately also for 
a vertical pipe ( A  is given by (2.4), in which the pressure gradient P,  can often be 
neglected so that A fi: 0.037). In the horizontal case gravity is neglected because 
F = 1.83 x For the above values of the parameters m, r, R, S and b, the 
growth rate has been calculated as a function of the wavenumber a, with the method 
outlined in this section. Figure 3 shows that the dynamic effect of the gas is very 
large! 
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FIGURE 3. The dynamic effect of the gas on the curves of neutral stability (S = 0.05, b = 0.2) and the 
growth rate Im(crc) ( R  = 400, S = 0.0657, b = 0.254) for an air/water system. The dashed curves 
are for the free surface approximation considered in $4. The solid curves have been calculated from 
the dispersion equation (5.7), which includes the dynamic effect of the gas in an asymptotic way. 
The dots have been calculated with the numerical method of $5.2. The difference between using 
F = 0 (vertical case) and F = 1.83 x (horizontal case) is very small. 

In $3.2 we have discussed the free surface approximation, i.e. the reduction of the 
interface conditions (3.8)-(3.11), to (4.4) and (4.5) if r -P 0, m --+ 00 and m r  0. For 
the air/water system considered in figure 3, r = 0.00121, m = 56.4, and m r  = 0.068. 
Thus, the free surface approximation appears to be reasonable (Miles 1960). Figure 3, 
however, shows that the effect of this approximation on the growth rate, the neutral 
curves and the critical Reynolds number is very large. The reason for this is again 
that the imaginary part of the phase velocity c is much smaller than the real part 
(cf. the explanation of the differences between the asymptotic results of Miles (1960) 
and the numerical results of Smith & Davis (1982) in $4.1). Therefore, an error of 
O(r,m-l,mr) in calculating the eigenvalue c of the problem has no dramatic effect 
on the real part of c, but significantly changes its imaginary part which is often 
O(r,m-', mr) or smaller. 

Also given in figure 3 are results for the full problem calculated with the numerical 
method discussed next. Comparing growth rates shows that the asymptotic result is 
quite good, although (aRm2r)'/3b = 3. The difference between the numerical solution 
and the asymptotic solution is even somewhat smaller if the extra term in (3.15) is 
taken into account (see the discussion at the end of $3), as can be understood from the 
asymptotic analysis. The agreement between the numerical and the asymptotic results 
is also satisfactory for the neutral curves. The asymptotic method underestimates the 
critical Reynolds number somewhat since (~tRrn*r) ' /~b < 2 at the critical point. 

If the dynamic effect of the gas is taken into account, the linear stability prob- 
lem is characterized by three more parameters (m, r ,  b)  than in the free surface 
approximation, bringing the total to seven. It is then not feasible anymore to give 
comprehensive results, even if only neutral curves or critical Reynolds numbers are 
considered. Nevertheless, a few results will be given to illustrate some of the effects 
of the gas. 

5.2. Numerical solution 
The results of this section have been obtained with a numerical method that is 
based on the expansion of the eigenfunctions x and 4 in terms of Chebyshev 
polynomials, point collocation, and subsequent solution of the resulting generalized 
matrix eigenvalue problem with the QZ-algorithm (see e.g. Molar & Stewart 1973). 
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The method is similar to that used by Orszag (1971) to investigate the stability of 
plane Poiseuille flow and has been used by us before (see Miesen et al. 1992). Note 
that the interface conditions can be written in a form linear in c. It is therefore not 
necessary to solve the problem iteratively as Valenzuela (1976) does. Furthermore, the 
introduction of the ‘virtual interface’ reduces the problem that Valenzuela encountered 
with the choice of the size of the computing domain in the gas. If assuming a linear- 
constant velocity profile is undesirable, it can be efficient to introduce a second 
‘virtual interface’ between the parts of the gas flow with steep and less steep velocity 
profile. 

As mentioned, seven parameters characterize the problem: a, R, S, A,  m, r ,  and 
b. We choose the critical Reynolds number R, as a function of the surface tension 
parameter S ,  as a global indicator of the stability problem. In an experiment m and 
r will not vary, and we choose their values for an air/water system (at atmospheric 
pressure and 15°C). Then only A and b are left as parameters. 

If, as in the case of a horizontal plate, A = 0 we need only consider the effect of 
different values of b on &(S). In an experiment for constant liquid flux, however, 
S depends on the gas speed U, (S = c~/[p,U~(U,)~d(U,)l); we therefore consider the 
dependence of b on U,. From t = icfpgUg’ we see that z cc Ug’; from the definitions 
of R and U j  (equation (2.3)) we find that d cc U;’ and U j  cc U,, because R is constant 
for constant liquid flux and a linear velocity profile. Thus b = U,/(rn Ui) is constant 
with varying gas velocity and S cc U;’. It is therefore useful to consider &(S)  at 
constant values of b. If A # 0 things are more complicated, because in that case R, 
S ,  and b are less simple functions of U,. 

Including the dynamic influence of the gas can lead to more complicated neutral 
curves, which leads to apparently strange discontinuities in the function &(S) (fig- 
ure 4) .  The neutral curve for S = 0.05 (solid line, figure 4a) is the same as the dotted 
curve in figure 3(a). If the surface tension coefficient is increased above approximately 
S = 0.082, the curve splits and an ‘island of instability’ is formed. If S is increased 
above the value for which the island disappears (S NN 0.092), the critical Reynolds 
number jumps to the minimum of the other neutral curve, showing as a discontinuity 
in &(S) (figure 4b). Blennerhassett (1980) also found such ‘islands of instability’ (for 
certain gas velocity profiles), but for the ‘interfacial mode’ which is discussed in the 
next section. 

From figure 4(b) it is again clear that the dynamic influence of the gas can be 
appreciable, and can lead to both a larger and a smaller critical Reynolds number. 
Compared to the free surface approximation the dependence of the critical Reynolds 
number on the inverse Weber number S is less strong, especially for smaller values 
of S or for larger values of b. Also note that the critical Reynolds number can 
(slightly) decrease if S increases and can strongly depend on the value of b. This 
is because the maximum growth rate is attained for c1 NN 1, because for very small 
or very large wavenumbers the growth rate will hardly change if b varies, since the 
wave is either much shorter or much longer than the thickness of the sublayer. If 
b is smaller than, say 0.2 the extra term in (3.15) becomes important, which means 
that the approximation of the gas velocity profile by a linear-constant profile is not 
correct anymore. For example, the minimum in the curve for b = 0.1 in figure 4(b) 
goes from 78 to 53 if the extra term is included. 

In figure 5(a) the influence of the profile curvature is investigated. It is relatively 
weak for S below any discontinuity and very large above it (if A is large enough). 
Finally, in figure 5(b) it is shown that the viscosity and density ratio of the gas and 
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FIGURE 4. Neutral curves for b = 0.2 (m = 56.4, r = 0.00121, A = 0, F = 0) and S = 0.05 (solid 
line), S = 0.09 (dotted), S = 0.10 (dashed). ( b )  The critical Reynolds number as a function of the 
surface tension coefficient S for b = 0.1 (dashed), b = 0.2 (solid), and b = 0.5 (dashed/dotted). The 
dotted line is for the free surface approximation. 
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FIGURE 5. The critical Reynolds number as a function of the surface tension coefficient S .  (a) 
b = 0.2, m = 56.4, r = 0.00121 and A = 0 (solid line; also given in figure 4), A = 0.1 (dashed), 
A = 0.4 (dashed/dotted); ( b )  is for b = 0.2, A = 0 and m = 56.4, r = 0.00121 (solid line; also given 
in figure 4 and a), m = 112.8, r = 0.00121 (dashed), m = 56.4, r = 0.00242 (dashed/dotted). 

the liquid have a marked effect on the curve &(S). A somewhat more viscous liquid 
can lead to a critical Reynolds number that is either an order of magnitude smaller, 
or several times larger than the critical Reynolds number of an air/water system! 

An estimate of the dynamic effects of the gas has also been given by Miles (1960). 
Following the analysis by Feldman (1957), Miles' result, equation (8.5), is obtained 
using interface conditions that lack the first-order corrections for the displacement 
of the interface. If we compare the growth rates, as found in the free surface 
approximation and as found from Miles' equation (8.5), the difference is small. We 
have seen, however, that the dynamic effects of the gas are large. Evidently, using the 
more exact form of the interface conditions is essential and this is a major flaw in 
the paper by Feldman (1957), as was noted previously by Blennerhassett (1980) and 
Hooper & Boyd (1983). 

From the results presented in this section we conclude that in order to describe 
waves with a phase velocity smaller than the maximum liquid velocity in the film 
correctly, it is necessary to take the dynamic effect of the gas into account, i.e. the 
free surface approximation in the description of these waves is incorrect. 
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6. The interfacial mode 
Until now we have considered the mode which is present whether or not the gas is 

included in the description of the sheared liquid layer. Since this mode (the internal 
mode) has a phase velocity smaller than the maximum liquid velocity, the critical 
layer is in the liquid. By including the dynamics of the gas flow a second mode is 
introduced with a phase velocity that is, in general, larger than the maximum liquid 
velocity but much smaller than the gas velocity. Thus the critical layer is in the 
viscous sublayer. Hence this mode is called the ‘interfacial mode’ and velocity profile 
curvature can be neglected. Note, however, that if the liquid is deep and gas speeds 
are relatively low, the critical layer shifts out of the viscous sublayer and velocity 
profile curvature becomes important (Miles 1957). 

R. Miesen and B. J .  Boersma 

6.1. Results of van Gastel 

The interfacial mode in fact corresponds to what are called capillary-gravity waves, 
which are studied in the context of the generation of surface waves by wind (see e.g. 
Miles 1962~). If the thickness of the fluid layer d is chosen larger than a few times the 
length of the disturbance, growth rates are found that are the same as for capillary 
waves on deep water. The easiest way to show this is by reproducing the result given 
in figure 5 of the paper by van Gastel, Janssen & Komen (1985) for the growth rate 
of capillary waves generated on deep water by wind with a linear velocity profile; 
the (infinite) linear wind profile is simulated by choosing a large enough value of the 
boundary layer thickness b in our description, so that results become independent of 
this parameter?. 

We, however, find an approximately 30% larger growth rate than van Gastel et al. 
(1985). This improves only slightly if their different liquid velocity profile is used (in 
our notation, given by (Uo/Ui)[exp(Uiy/Uo) - 11 with UO the interfacial velocity). We 
therefore attribute the difference to the asymptotics used in van Gastel et al. (1985) 
for this special case of a linear wind profile. If the results for a linear-logarithmic 
wind velocity profile (2.6) are compared, the difference is very small (figure 6). This 
small difference could be due to the asymptotic approximation used in van Gastel 
et al. (1985) and the fact that we have used a finite number of polynomials and a 
finite thickness for both the liquid and the gas. 

We have now shown that the mode that enters the problem if the dynamics of the 
gas flow is included into the description is akin to capillary waves. For waves that 
are not too long, this mode has a positive phase velocity relative to the gas/liquid 
interface and its magnitude is of the order of the liquid velocity. Reproducing the 
results of van Gastel et al. (1985) has also been a second check, after comparing with 
the asymptotic results in $5.1, that the code for the numerical solution of the problem 
works well. A third check (not given here) was a comparison with the asymptotic 
results of Yih (1990) for the linear stability of a sheared film of a very viscous liquid. 

For certain parameter values a third unstable mode was found. This mode is 
associated with the virtual interface and is therefore not physically relevant: the 
corresponding eigenvalue disappears if c is neglected in the conditions (3.12)-(3.15). 

The parameters are calculated as follows. For given friction velocity u. the shear force is given 
by definition as t = pguT. Then, the thickness of the liquid layer is chosen to be a few times the 
wavelength. This gives the velocity Ui = d t / p l ,  the Reynolds number R = p~Uid/pl, and the surface 
tension parameter S = a/plU;d. For b, a value of 1 is large enough, in general. The dimensional 
growth rate of van Gastel et al. (1985) is given by 2aIm(c)Ui/d. 
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FIGURE 6. The dimensional growth rate aIm(c)Ui/d of the interfacial mode as a func- 
tion of the dimensional wavenumber u/d, for a linear-logarithmic velocity profile in the gas, 
m = 55.6, r = 0.0012, R = 1.98 lo5, S = 1.11 F = 5.40 lo-*, A = 0, b = 1, corresponding to (in 
SI units) g = 9.8, o = 7.25 x lo-*, PI = 1000, pg = 1.2, p~ = 0.001, pg = 1.8 lop5, d = 0.06, Ui = 3.30 
and u. = (z/P,)'/~ = 0.214ms-'. The interfacial velocity UO = 0.098ms-' and the parameter s in 
(2.6) is 5. The points have been copied from figure 5 in the paper by van Gastel et al. (1985). 
The curves have been determined numerically, using the exponential (solid line) and linear velocity 
profile (dotted line) in the liquid. 

6.2. The internal and the interfacial mode 
We will now discuss the result (figure 7) of a calculation of the growth rate for both 
the internal and the interfacial mode, for parameter values that have also been used 
in figure 3. Furthermore, we will briefly consider the validity of the approximation 
(2.7) of the velocity profile in the gas. From figure 7 it is clear that the growth 
rate of the interfacial mode is an order of magnitude larger than the growth rate 
of the internal mode; this is the general picture. Nevertheless, if the dimensional 
growth rate of the internal mode is considered by multiplying by U i / d  = 19200s-', 
a maximum growth rate of approximately 300s-' is found which is large enough 
for this mode to be observed. Furthermore, we should keep in mind that we have 
considered wave growth in the small-amplitude limit and wave growth will saturate 
as finite-amplitude effects become important. In interpreting experiments, the internal 
mode should therefore not be neglected a priori. Some experimental evidence that 
the internal mode is indeed important will be discussed in the next section. 

Comparing the results of a calculation using the velocity profiles (2.6) and (2.7) gives 
us an idea of whether the simplification of the velocity profile in the gas is justified. 
In both cases a linear velocity profile in the liquid is used. For the calculation with 
the logarithmic profile (2.6), the virtual interface, beyond which the gas velocity is 
assumed constant, is chosen to be far enough from the liquid/gas interface for the 
eigenvalues not to change substantially anymore. In figure 7 it can be seen that the 
differences between the results for the two velocity profiles are reasonably small and 
are smallest for high wavenumbers, i.e. waves that are affected by the linear sublayer 
only. For small wave numbers the differences are small if the maximum velocities of 
the two profiles are equal, because very long waves are not changed by the details of 
the flow at the interface. The largest difference between the growth rates found with 
the two velocity profiles is for a = O( 1). We conclude that the approximation (2.7), 
which allows for an asymptotic solution of the problem (95.1) or for a more effective 
numerical solution (less polynomials), is valid unless a high accuracy is required or 
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FIGURE 7. The dimensionless growth rate of the interfacial and the internal modes as a function of 
tl for the velocity profile (2.7) in the gas (solid and dotted line respectively). The short-dashed and 
long-dashed lines correspond to the liquid and the gas mode, respectively, for the linear-logarithmic 
profile (2.6) with b = 3.5, s = 5 and u. = (z/p,)'/* = 4.00. 

unless the critical layer is not well within the viscous sublayer so that velocity profile 
curvature is important. 

7. Discussion 
In the foregoing we have considered the theoretical problem of the stability of a 

liquid film that is sheared by a gas. It has been shown that using the free surface 
approximation leads to quite different results for, for example, the critical Reynolds 
number. Including the dynamics of the gas in the problem leads to a second 
mode of instability, corresponding to capillary waves. In this section we will compare 
predictions of the (in)stability of sheared liquid films with experimental and theoretical 
results as reported in papers by Cohen & Hanratty (1965) and Craik (1966). This 
also offers the opportunity to compare the two methods to predict the instability of 
a sheared liquid : using coupled Orr-Sommerfeld equations and using the 'divided 
attack' (see Benjamin 1959). To our knowledge this has not been done before. In 
a comparison between experiment and theory the second method is mostly used, in 
which the Orr-Sommerfeld equation for the liquid is solved considering the wave- 
induced stress variations in the gas as given. On the one hand this leads to much 
simpler equations to be solved, but on the other hand the problem is shifted to finding 
correct expressions for the stresses. 

7.1. Cohen & Hanratty 
Cohen & Hanratty (1965) investigate the conditions for the onset of instability of 
liquid films that are several millimetres thick, having a viscosity between one and 
ten times that of water. The experiments are done in a horizontal, long, wide 
channel approximately 1 in. high. For a fixed flow rate in the film, i.e. for a constant 
liquid Reynolds number, they determine the gas velocity (and film thickness) at 
which the first waves develop. This critical gas velocity is compared with predictions 
from a theoretical analysis in which the Orr-Sommerfeld equation for the liquid is 
approximately solved. The wave-induced stresses in the gas at the liquid/gas interface 
are calculated using a method described by Miles (1962b). It is assumed that the 
gas is of infinite extent - an assumption we will also make - which is correct if 
27cH/J. >> 1, where H is the height of the channel and A is the wavelength. This 
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No. Fluid R pl(mPas) P I  pg (pPas) p g  d(mm) 4 
1 HzO 176 0.929 1000 18.3 1.14 1.89 4050 
2 H20 320 0.933 1000 18.3 1.14 3.54 2760 
3 HzO 494 0.925 1000 18.3 1.14 4.91 1870 
4 G-I 280 3.95 1110 18.5 1.11 6.41 2330 
5 G-I 122 3.89 1110 18.5 1.11 4.48 3600 
6 G-I1 96 11.2 1170 18.5 1.16 7.32 3650 
7 G-I1 42 11.2 1170 18.5 1.16 5.28 4620 

TABLE 2. Experimental conditions and results from Cohen & Hanratty (1965). The liquid Reynolds 
number R is based on the maximum liquid velocity Ui and is twice the Reynolds number N R  in 
Cohen & Hanratty (1965). The gas Reynolds number 4 is based on the gas properties, the average 
gas velocity and the height of the channel ( H  = 0.0258 m) minus the film thickness. 

condition is barely satisfied for the wavelengths in the experiments (271H/;1 w 5) ,  but 
it is expected that this is good enough. 

In table 2 the conditions for the experiments given in table 2 of Cohen & Hanratty 
and the results for the critical Reynolds number of the gas are given in SI units. The 
results of the calculations by Cohen & Hanratty for the critical gas Reynolds number 
are given in the second column of table 3. The agreement between the experimental 
value of the critical Reynolds number and the theoretical one is quite good, although 
the theoretical value is systematically higher (on average 23%). 

With the method presented in this paper the critical gas velocity can be obtained 
as follows. If we use the model with the linear-constant gas velocity profile the only 
parameter that can be varied is b, which is proportional to the maximum gas velocity 
(equation (2.8)). If a value of b is chosen, Ui,S  and F can be calculated because 
d and R are known from the experiment. Thus b is varied to determine for which 
value the maximum growth rate is zero, giving the critical maximum gas velocity 
U,, = (1  + m b)Ui (in the laboratory frame). The average gas velocity is (after some 
simple algebra) given by U,, = Vi[l + m b - m b2d/(H - d)] .  The mode that is most 
unstable has a phase velocity that is typically three times the maximum liquid velocity 
and is thus the interfacial mode. The results for this case are given in table 3 (third 
and fourth column). The agreement with the experiment is better than obtained by 
Cohen & Hanratty (1965), some critical gas Reynolds numbers being too high, others 
being too low and with an average error of 14%. 

Better agreement may be expected if a gas velocity profile as given by equation (2.6) 
is used (the virtual interface y = b is then assumed to be halfway into the gas layer). 
The problem in this case is that all parameters are fixed if R and d are given. Ui is 
fixed, so that z is fixed through the definition of Ui (equation (2.3)) and this completely 
determines the velocity profile in the gas. This problem can be solved in several ways. 
Cohen & Hanratty (1965) solve the problem by using gas velocity profiles measured 
in the dry channel and calculating for which profile and corresponding average gas 
velocity the film is neutrally stable. For our calculations this corresponds to using the 
measured R and d for the liquid film and varying z in the gas velocity profile (2.6). 
The shear stress in the basic flow is then, however, discontinuous at the interface. 
Throughout this report we have seen that such an approximation of the interface 
conditions can lead to a considerable error in the growth rate and thus in the critical 
Reynolds number. This is confirmed by the results for the critical gas Reynolds 
number, especially for the experiments with the more viscous fluids (table 3; the 
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No. Cohen Linear-constant Discontinuous stress Fixed d Fixed R Exp. 
R g b  4 u* 4 U. Rg u. 4 Rg 

1 4500 0.463 3050 0.204 4200 0.196 3990 0.197 4020 4050 
2 3100 0.388 2290 0.184 3410 0.154 2780 0.166 3050 2760 
3 2500 0.272 1680 0.142 2300 0.131 2130 0.138 2280 1870 
4 3300 0.0649 2520 0.096 1350 0.202 3060 0.159 2330 2330 
5 4100 0.115 2990 0.154 2520 0.233 4080 0.207 3540 3600 
6 4300 0.0480 4200 0.129 1830 0.269 4260 0.222 3400 3650 
7 5900 0.0795 4710 0.190 3230 0.297 5420 0.269 4830 4620 

TABLE 3. The critical Reynolds number for the gas calculated in several ways. In the second column 
the values found by Cohen & Hanratty (1965) are given. The other values are calculated by us with 
the linear-constant velocity profile in the gas, with the linear-logarithmic velocity profile in the gas 
and d and R from the experiment so that the shear stress is discontinuous at the interface, with 
only d from the experiment, and with R from the experiment. The last column gives the critical 
Reynolds number found experimentally. 

average of the gas velocity has been determined numerically from (2.6)). The reason 
why the agreement between the experiments and the calculations in the paper by 
Cohen & Hanratty (1965) is fairly good is unclear, because the same approximation 
is made there. As an ad hoc explanation we could argue that the approximation made 
in calculating the wave-induced stresses in the gas (for which it is assumed that the gas 
has an interface with a solid) somehow compensates for the discontinuity in the shear 
stress. Two other solutions are to either consider the value of d or of R as unknown; 
then the value of 7 can be adjusted to obtain neutral stability. The results for these 
two cases are also given in table 3,  If d is fixed, the critical gas Reynolds number 
found is on average 14% too high. The corresponding values of the liquid Reynolds 
number R which follow from z and d are, in general, not in very good agreement. 
Note, however, that in Cohen & Hanratty (1965) they are taken to be given. From 
table 3 it can be seen that if R is fixed, the agreement for the critical gas Reynolds 
number is even better. The average error in this case is only 7% (probably within 
the experimental accuracy) and 3.5% if the experiment with the highest Reynolds 
number is omitted (the film is probably not laminar in that case). The corresponding 
values of the film thickness d, which follow from z and R, are again not in good 
agreement. Another possibility, which we will not pursue any further here, is to use 
a more accurate gas velocity profile with an extra parameter. This will lead to results 
at least as good as by fixing R. 

In conclusion the critical gas velocity for the generation of capillary waves on liquid 
films of a few millimetres thick can be predicted well with a linear stability analysis 
based on the coupled Orr-Sommerfeld equation for the liquid film and the gas. The 
error in the prediction of the critical gas speed (10Y0 or less) appears to be of the 
order of the experimental error, which is better than obtained using a divided attack. 

7.2. Craik 
Craik (1966) has done some nice experiments with an apparatus similar to that of 
Cohen & Hanratty (1965), with the difference that the channel height could be either 
1 or 6 in. Craik’s experiments offer the possibility to check our theoretical work for 
films thinner than studied by Cohen & Hanratty (1969, i.e. with a thickness between 
0.1 mm and 1.5 mm. Cohen & Hanratty fix the liquid flow rate and increase the 
air flow until waves appear. Craik keeps the air flow fixed and decreases the liquid 
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flow rate: (i) at first waves are present; (ii) for a lower liquid flow rate, i.e. for a 
thinner film, the film becomes stable; (iii) on decreasing the flow rate further the 
film becomes unstable again! The first two events can be easily understood as the 
waves are of the same type as observed by Cohen & Hanratty (1965). On decreasing 
the film flow rate, i.e. the film Reynolds number, the critical gas Reynolds number 
increases (see tables 2 and 3) and when it becomes larger than the Reynolds number 
of the gas flow in the experiment, the film is stable. The waves in (iii) were not 
observed by Cohen & Hanratty (1965) because the films on which they occur are 
thinner (d < 0.5 mm) than studied there. These waves have phase velocities that are 
approximately equal to the maximum liquid velocity, contrary to the waves observed 
in (i) which move much faster. Therefore, Craik calls the waves in regime (i) ‘fast 
waves’ and the waves in regime (iii) ‘slow waves’. His experiments furthermore show 
that if the air velocity is sufficiently large the stable regime (ii) disappears and the 
transition between the two wave types is continuous. 

With a theoretical analysis Craik (1966) shows that the mechanism for the genera- 
tion of ‘slow waves’ is the ‘heaping up’ of liquid by the component of the tangential 
stress that is in phase with the wave slope, and that this mechanism is dominant for 
sufficiently thin films. The agreement between Craik‘s theory and the observations for 
‘slow waves’ is quite good. However, the transition to ‘fast waves’ and the thickness 
for which a film is most stable is not found from Craik‘s solution of the stability 
problem. We will now compare Craik’s results (to which references is made by use of 
square brackets [ 1) to calculations along the lines described in this paper. 

Craik makes the following approximations: (i) the gas is of infinite extent (the 
only approximation listed here we will also make); (ii) a ‘divided attack’; (iii) 
a2 << 1, aR < 0(1), aRlcl c O(1); (iv) approximate expressions for the stresses 
of the gas on the wavy boundary (equations [5.2]-[5.4]). Craik’s result with these 
approximations is given by [6.5]: 

a2S +P-n + - 3iC = (1 -c) - + -(1 - c ) -  

2a [ I ~ R  

where c is the phase velocity in the laboratory frame, and the normal stress Il and 
tangential stress Z are given by [5.2]-[5.4]: 

II = ( a / ~ c f ) [ l  - 4 s  + i(2cf - s)], 
s = 0.64441, 4 = ( I /~f ) (m~raR)-* /~a~,  p = 1.732(m2r)-‘/3, 

(7.2) i c = (~pl/Jrcf)e~’/~a~(a~)-~/~, 

H / 2 d  

1 = 1 [U(Y)/Ugl2e-“yd(aY)’ 

where U ( y )  is the dimensional gas velocity profile, with U(0)  = 0 and U(H/2d) = U,; 
H is again the channel height?. Here we will use the velocity profile given by equation 
(2.7), although we have seen that the more realistic velocity profile given by equation 
(2.6) gives results that can be quantitatively different. Calculations can, however, 
be done much more efficiently for this simpler velocity profile, because considerably 
fewer Chebyshev polynomials are needed and the integral Z given by (7.2) can be 
found analytically. 

Craik further simplifies the above expression by: (v) assuming 1 to be constant; 
(vi) neglecting the component of the normal stress in phase with the wave slope and 

t An extra factor (wP2l3, which is missing in Craik’s paper (Craik 1993, personal correspon- 
dence), has been included in the expression for d in equation (7.2). 
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FIGURE 8. The dimensionless growth rate plotted against the wavenumber, for a water film of 
thickness 2 x lOV4m with R = 7. The solid line is the result of the numerical solution of the 
coupled Orr-Sommerfeld equations, where we have used that cf = 0.0015 (see Craik 1966) so 
that V ,  = 13.9ms-'. The long-dashed line is found from (7.1)-(7.2). The dotted-dashed line is 
found from the same expressions but with Z/cf = 220. The short-dashed line is found when the 
approximation (7.3) is used in (7.1), and the dotted line follows from (7.4) and corresponds to 
figure 10 of Craik (1966). 

the component of the shear stress in phase with the wave height (leading to [8.1]): 

I7 = aI/Rcf, Z = i (PZ/~f)a~(aR)-~/~;  (7.3) 

(vii) assuming that IIm(acR)I << 1 so that [6.5] gives Re(c) = 1 and [7.3]: 

(aR)2 (17 + 2ia 3 2  - a2S - F 
Im(acR) = - 

3 (7.4) 

The effect of these approximations is illustrated by figure 8, showing large differences 
between the successive approximations. It is remarkable, however, that the crudest 
approximation (7.4), which Craik uses in his discussion of the experiments, gives a 
point of neutral stability that is very close to that found from the original expressions 
(7.1) and (7.2), contrary to intermediate approximations. A comparison using neutral 
curves which are more important in explaining observations, is given in figure 9. 
Especially important is the minimum of such a curve, i.e. the critical Reynolds 
number &. The differences between the approximations are appreciable again but 
the critical values of the stress are reasonably close: z, = 0.0711 Nm-2 (numerical), 
0.0724 Nm-* (found from (7.1) and (7.2)), 0.0895 Nm-2 (expression (7.4)). 

Whether or not the shear stress of the gas on the liquid film is larger than 
z, determines if waves are seen. We therefore consider the critical shear stress as a 
function of the film thickness (figures 10 and 11). It is important to note the qualitative 
difference between the dotted curve and the solid and dashed curves which have a 
maximum. This maximum is essential in understanding the sequence of observations 
(i)-(iii) listed at the start of this subsection. In an experiment a horizontal line is 
traversed in the (d ,  7,)-plane. The starting point (i) of the experiment corresponds 
to an unstable film; if the film thickness is decreased sufficiently, the stable area (ii) 
under the curve is reached; if the film thickness is decreased further, the film becomes 
unstable again (iii). The maximum in the curve z,(d) is also observed experimentally. 
Craik notes that the film is maximally stable for d = 0.46 mm (1 in. channel); we find 
d = 0.35 mm. 
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FIGURE 9. Curves of neutral stability, in the a / d  us. z = U'R/(p& plane, for a water film of 
thickness 0.215 mm. The solid line has been found numerically using cf = 0.0021 (which follows 
from table 1 of Craik 1966). The dashed line is found from (7.1)-(7.2). The dotted line corresponds 
to figure 9 of Craik (1966), and follows from (7.4) with I / c f  = 220. 
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FIGURE 10. A comparison between the experimental results (squares) for 'slow waves' in the 
6 in. channel and theory: (a)  the critical shear stress zc vs. the film thickness d;  (b )  the (dimensionless) 
phase speed at the critical point as a function of d (note the transition from slow to fast waves at 
d = 0.0004). The solid lines are found numerically using cf = 0.0015 (see Craik 1966) The dashed 
lines are found from (7.1) and (7.2) (the dots denote the points that we have calculated). The dotted 
line in (a) corresponds to figure 11 of Craik (1966), and follows from (7.4) with I = 0.6 ( I  / c f  = 400). 
The horizontal line corresponds to a trajectory that is followed in an experiment. 

The parts of the curve to the left and to the right of the maximum in z,(d) indeed 
correspond to 'slow' and 'fast waves', respectively, as can be seen from figures 10(b) 
and l l (b) .  For very thin films the phase speed is equal to the velocity at the surface 
of the film, i.e. c = 1. If the film thickness is increased above the value for which z,(d) 
has its maximum the phase speed suddenly increases, as is the case in experiments. 
We conclude that qualitatively the agreement between the observations and theory is 
excellent if the numerical solution is used or if (7.1) and (7.2) are used without further 
approximation. 

To make a more quantitative comparison the critical conditions found from tables 
1 and 2 in Craik (1966) are included in figures 10 and 11, respectively. From 
figure 10, we see that the agreement between the experiments for 'slow waves' and the 
boundary between a stable and an unstable film, as found from (7.1) and (7.2) is good 
(although one would expect the experiments to be a bit more into the unstable area). 
Unfortunately, the more exact solution of the stability problem, i.e. our numerical 
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FIGURE 11. A comparison between the experimental results (triangles) for ‘fast waves’ in the 
1 in. channel and theory. Apart from cf = 0.0032 the parameters used are as in figure 10. 

solution, does not improve on this. This discrepancy can, for example, be caused 
by the approximation (2.7) of the gas velocity profile, by a smaller actual value 
of the friction coefficient cf (although the value cf = 0.0015 given by Craik seems 
rather small already), the presence of pollution on the film surface in the experiments 
(leading to a lower surface tension and a lower zc), or other experimental errors. 

Improved agreement is found if it is taken into account that the wavelength should 
be smaller than the length of Craik‘s apparatus and the growth rate should be large 
enough for waves to grow substantionally in the time they traverse the channel 
(see Windt 1994). The phase velocity of the slow waves compares better to the 
numerical solution than found from (7.1) and (7.2), the slightly lower experimental 
value (c  = 0.8) being due to nonlinear effects (see Craik 1965). The jump in the phase 
velocity is due to the dashed curve in figure 9 having two minima. 

The theoretical prediction of the critical conditions for ‘fast waves’ is in reasonably 
good agreement with experiment, the points lying in the unstable part of the (d,z,)-  
plane and close to the boundary with the stable part. The phase velocity for ‘fast 
waves’ is also in reasonable agreement with experiment. 

7.3. Observing the internal mode 
The waves observed by Cohen & Hanratty (1965) and by Craik (1966) correspond 
to the interfacial mode since they move faster than the maximum liquid speed 
(Craik‘s ‘slow waves’ also move faster if their amplitude is sufficiently small). The 
question arises whether there is an experimental situation for which the internal 
mode leads to an observable change of the flow. With this we return to a remark 
made in $6.2 that if both modes are unstable (figure 7) the internal mode can, 
in principle, be more important owing to nonlinear effects. The experiments in 
Cohen & Hanratty (1965) and Craik (1966), however, focus on conditions for which 
only one mode is (marginally) unstable. We will now discuss some circumstantial 
evidence that the internal mode may indeed be important. 

If a liquid layer is sheared by a gas flow it can be unstable. The instability with 
the largest growth rate has a wavenumber that is order one, i.e. a wavelength that is 
typically one to ten times the thickness of the liquid layer. At the same time much 
longer waves can exist. These waves are kinematic in nature (see e.g. Whitham 1974; 
Jurman & McCready 1988) in contrast to the waves studied here and are prominent 
in the wave spectrum found by Bruno & McCready (1988). In the final stage of the 
(nonlinear) evolution of these long waves, they have the appearance of a bore and are 
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called ‘roll waves’ (see, for example, the papers by Hanratty and co-workers: Hanratty 
& Engen 1957; Hanratty & Hershman 1961; Miya, Woodmansee & Hanratty 1971). 

These roll waves are not only an interesting wave phenomenon that can be easily 
observed, but are also directly related to the mechanism by which droplets are 
entrained from the film. This was already suggested by Hall-Taylor & Hewitt (1962) 
and photographs in a report by Steen & Wallis (1964) give the conclusive proof. More 
precisely, the entrainment mechanism is the formation of droplets from short waves 
that are sheared from the crests of roll waves. The observation that the formation of 
roll waves coincides with the onset of entrainment is confirmed by, for example the 
experiments of Andreussi, Asali & Hanratty (1985). 

For Reynolds numbers of the liquid layer that are sufficiently large ( R  > 400), the 
generation of roll waves can be understood in terms of the destabilizing influence 
of, for example, the component of the normal stress that is in phase with the wave 
height (Hanratty 1991, Andreussi et al. 1985). The critical Reynolds number for the 
gas thus found depends only weakly on the Reynolds number of the liquid and is 
in excellent agreement with experiments. For smaller liquid Reynolds numbers the 
critical gas Reynolds number for roll wave formation rapidly increases and appears 
to have an asymptote at a finite liquid Reynolds number ( R  M 200 for air-water 
flow). This is in contradiction with theory (Hanratty 1991), which predicts a finite 
critical gas Reynolds number as the liquid Reynolds number goes to zero. 

The only explanation of this asymptote given so far can be found in a paper by 
Andreussi et al. (1985). They assume parameters, such as the friction factor, to vary 
along the wave and the film Reynolds number to have a relaxation time with respect 
to the local conditions (e.g. the thickness and velocity of the film). Owing to the 
fact that the friction coefficient depends on the Reynolds number this leads to an 
out-of-phase component of the interfacial shear stress, which stabilizes the film at 
low Reynolds numbers. The assumption on the relaxation of the Reynolds number 
is however, not clear to us. Relaxation of the friction factor, giving similar results, 
is easier to justify: the friction coefficient depends on the surface roughness, which is 
determined by the presence of short waves. These waves do, however, not respond 
instantaneously to the variation of the local conditions because their growth rate is 
finite. (A relaxation effect - a downstream maximum - of the shear stress may exist 
even if the surface roughness has no relaxation effect (Fredsere et al. 1993).) 

It is interesting to note that for a water-air flow the internal mode becomes unstable 
for a liquid Reynolds number that is also order 100 (figure 4, if the surface tension 
parameter S is not too large). The interfacial mode on the other hand is unstable 
for the whole range of parameter values for which roll waves are observed. The 
growth of roll waves directly from the internal mode seems unlikely in view of the 
work of Bruno & McCready (1988), who study the evolution of the wave spectrum 
of disturbances on a sheared film, and the difference in the mechanism that leads 
to roll waves (Hanratty 1991) and short waves (Miles 1962~). A way, however, in 
which the internal mode can have an effect on the formation of roll waves is through 
the fact that it influences the surface roughness of the film. A possibility is that the 
internal mode can give rise to a relaxation effect, while the interfacial mode cannot 
because of its much larger growth rate. An alternative way to explain the transition 
is ‘by a somewhat sudden change in the rate of increase of fi (the friction factor) 
with increasing ReL (the liquid Reynolds number)’. This sudden increase could then 
be caused by the internal mode becoming unstable. A test on the validity of the 
above suggestions is to compare the effect that the physical properties of the liquid 
and the gas have on the value of the liquid Reynolds number above which roll waves 
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are observed and the effect on the critical Reynolds number for the internal mode 
(Miesen 1995). 

8. Conclusion 
We have studied the stability of a thin liquid film that is sheared by a concurrent 

gas flow. We discuss the free surface approximation of the problem, in which the 
effect of the wave-induced fluctuations in the gas flow, i.e. the dynamics of the gas, is 
neglected. It is shown that the interface conditions of Miles (1960) should be used and 
not those of Smith & Davis (1982). Our results for the problem in the free surface 
approximation resolve a discrepancy between the asymptotic solution of Miles (1960) 
and the numerical solution of Smith & Davis (1982). We find a second curve of 
neutral stability, not noticed by Smith & Davis, that corresponds to asymptotic result 
of Miles in the high Reynolds number limit ($4). 

In the second part of the paper the dynamic effect of the gas is considered. From a 
comparison of the results in this case with those in the free surface approximation it 
is clear that the free surface approximation is, in general, not correct ($5). Including 
the dynamics of the gas in the problem also introduces a second mode of instability 
(Blennerhassett 1980; Yiantsios & Higgins 1988), which is shown to correspond to 
capillary gravity waves studied by, for example, Miles (1962~) and van Gastel et al. 

In the last part ($7) our results are compared to the much cited experimental and 
theoretical results of Cohen & Hanratty (1965) and Craik (1966). It is shown that the 
agreement between theory and experiment is improved if the linear stability problem 
is solved directly from the Orr-Sommerfeld equations for the gas and the liquid 
flow that are coupled by interface conditions. Finally, we discuss how the internal 
mode can play a role in the generation of ‘roll waves’, which are of great importance 
in describing entrainment of droplets from the film. We suggest that the critical 
Reynolds number for the internal mode and for roll wave generation are related. 

(1985) 

We would like to thank Dr Antony Rigby for his comments on the manuscript. 

Appendix. Eigenvalue equation 
Expanding the determinant in equation (4.8) gives 

where we have used the definition (4.10), so that with (4.6) 

*- - -(aR)-’l3zF(z). (A 2) xi, 
Substitution of (4.4), (4.5) and (4.7) into (A 1) gives after some manipulation, 

] (c + 2ia/R)[c + 2i(l + el)a/R] 
a2 cosech2a F(z)(c + 1) 
1 - a(c + l)F(z) cotha 

a cotha + 
+[c + 2i(l + el)a/R](l - 2a2e2) - a2S [l + 4a2(1 + c ~ ) ~ / ( c ~ R ~ ) ]  = 0, (A3) 

where el = -2ein/4(aR)-1/2~-3/2 and e2 = -2a2e-in/4(aR)-3/2c-1/2. Neglecting now 
terms of order R-3/2 and of order SIR2 gives equation (4.9). 
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